自然护肤网 加入收藏  -  设为首页
您的位置:自然护肤网 > 知识百科 > 正文
什么是“小波神经网络”?能干什么用呀
什么是“小波神经网络”?能干什么用呀
提示:

什么是“小波神经网络”?能干什么用呀

小波神经网络(Wavelet Neural Network, WNN)是在小波分析研究获得突破的基础上提出的一种人工神经网络。它是基于小波分析理论以及小波变换所构造的一种分层的、多分辨率的新型人工神经网络模型。  即用非线性小波基取代了通常的非线性Sigmoid 函数,其信号表述是通过将所选取的小波基进行线性叠加来表现的。它避免了BP 神经网络结构设计的盲目性和局部最优等非线性优化问题,大大简化了训练,具有较强的函数学习能力和推广能力及广阔的应用前景。 “小波神经网络”的应用: 1、在影像处理方面,可以用于影像压缩、分类、识别与诊断,去污等。在医学成像方面的减少B超、CT、核磁共振成像的时间,提高解析度等。 2、在信号分析中的应用也十分广泛。它可以用于边界的处理与滤波、时频分析、信噪分离与提取弱信号、求分形指数、信号的识别与诊断以及多尺度边缘侦测等。 3、在工程技术等方面的应用。包括电脑视觉、电脑图形学、曲线设计、湍流、远端宇宙的研究与生物医学方面。 扩展资料: 小波神经网络这方面的早期工作大约开始于1992 年,主要研究者是Zhang Q、Harold H S 和焦李成等。其中,焦李成在其代表作《神经网络的应用与实现》中从理论上对小波神经网络进行了较为详细的论述。近年来,人们在小波神经网络的理论和应用方面都开展了不少研究工作。 小波神经网络具有以下特点:首先,小波基元及整个网络结构的确定有可靠的理论根据,可避免BP 神经网络等结构设计上的盲目性;其次,网络权系数线性分布和学习目标函数的凸性,使网络训练过程从根本上避免了局部最优等非线性优化问题;第三,有较强的函数学习能力和推广能力。

小波神经网络
提示:

小波神经网络

姓名:程祖晗

学号:19021210938

【嵌牛导读】随着优化算法的不断研究,神经网络已经深入到许多领域,解决了许多实际问题,并引发了人类不断地思考。本篇讨论了小波神经网络的相关知识。

【嵌牛鼻子】BP神经网络  小波变换   小波神经网络

【嵌牛正文】

BP 网络的实现过程主要分成两个阶段,第一阶段是信号的前向传播,从输入层经过隐含层到达输出层,第二阶段是误差的反向传播,从输出层经过隐含层到达输入层。误差传递完后,依次调节输入层和隐含层之间的权值和偏置,以及隐含层和输出层之间的权值和偏置。如图1所示:




BP神经网络的神经元如图2所示:

其中,激活函数为Sigmoid函数,表达式为:

2.1小波变换

小波变换是以 Fourier 分析为基础的一种新的数学变换手段,它克服了 Fourier变换的局限性以及加窗 Fourier 变换的窗口不变的缺点。小波变换主要通过伸缩和平移实现多尺度细化,突出所要处理的问题细节,有效提取局部信息。

2.2小波神经网络

小波神经网络是改进的BP网络,将原先的隐含层的Sigmiod激活函数替换为小波函数——Morlet小波,其表达式为



本篇设计的4层小波神经网络的模型图如图3所示:

2.3模型的建立

a.初始化各项参数

在图3的网络设计中, 为输入样本, 为输出样本, 分别为输入层、隐含层、输出层节点, 为各节点的连接权值。

b.前向计算

隐含层1的输入为所有输入的加权和: ,隐含层1的输出为 。其余隐含层的输入输出及输出层与1类似,在此不再赘述。

c.误差反向传播

误差反向传播采用梯度下降算法调整各层间的权值,即权值修正过程。权值修正方式有两种,一是按输入样本逐次修正,二是全部样本输入后再修正。本篇采用第一种方法。




根据误差函数 修正权值和小波因子,为了避免算法陷入局部最小值,加快其收敛速度,引入了动量因子 ,学习率为 ,公式分别如下表示:

总结:小波神经网络拥有小波变换的优点,避免了 BP 网络设计结构上的盲目性,但是隐含层的节点数以及各层之间的权值、尺度因子的初始化参数难以确定,会影响网络的收敛速度。在后续的学习中,可以尝试其他小波函数的神经网络,通过比较其最优结果构造小波神经网络。

关于小波神经网络的平移因子和伸缩因子
提示:

关于小波神经网络的平移因子和伸缩因子

平移因子b和伸缩因子a都是通过训练得到的,确定变化量的方法依然是误差反传算法。可参考附件中的《30个案例》的第23个案例——基于小波神经网络的短时交通流量时间序列预测。 小波神经网络相比于前向的神经网络,它有明显的优点:首先小波神经网络的基元和整个结构是依据小波分析理论确定的,可以避免BP神经网络等结构设计上的盲目性;其次小波神经网络有更强的学习能力,精度更高。总的而言,对同样的学习任务,小波神经网络结构更简单,收敛速度更快,精度更高。